על מנת לערוך סיכומים נדרש לפתוח חשבון.

התפלגויות: הבדלים בין גרסאות בדף

מתוך סיכומונה, אתר הסיכומים החופשי.
קפיצה לניווט קפיצה לחיפוש
שורה 93: שורה 93:
בוחרים באקראי (ובלי החזרה) מדגם בגודל n, מתוך כד המכיל N כדורים מתוכם m לבנים והשאר שחורים. X מ"מ היפרגיאומטרי מתאר את מספר הכדורים הלבנים שנבחו.
בוחרים באקראי (ובלי החזרה) מדגם בגודל n, מתוך כד המכיל N כדורים מתוכם m לבנים והשאר שחורים. X מ"מ היפרגיאומטרי מתאר את מספר הכדורים הלבנים שנבחו.
[[Image:Pilu6.JPG|left]]
[[Image:Pilu6.JPG|left]]
===התפלגות מולטינומית===
מבצעים N ניסויים בלתי תלויים . לכל ניסוי קיימות k תוצאות אפשריות כך שההסתברות לתוצאה i היא [[Image:Pilu7.JPG]] ומתקיים[[Image:Pilu8.JPG]]
[[Image:Pilu9.JPG]]הוא מספר התוצאות מסוג i שהתקבלו ב-N הניסויים

גרסה מ־18:58, 16 בספטמבר 2005

התפלגויות – סיכום

1התפלגות אחידה – יוניפורמית

X הוא מ"מ מפולג אחיד על הקטע [1,N] אם הוא מציין נקודה שנבחרה באקראי בקטע שבין1 ל N.

Pilu1.JPG







התפלגות פואסון

X משתנה מקרי המקבל את הערכים...,0,1,2 הוא משתנה מקרי פואסוני עם הפרמטרGggg.JPG , אם לכל Ggg-2.JPGמתקיים

Pilu2.jpg








התפלגות גיאומטרית:

X משתנה מקרי גיאומוטרי עם הפרמטר p אם עורכים ניסויים, הסתברות ההצלחה בכל ניסוי היא P וההסתברות להצלחה ראשונה בנסיון ה- K היא

Pilu3.jpg










התפלגות בינומית:

X משתנה מקרי בינומי אם עורכים n ניסויי ברנולי, ההסתברות להצלחה בכל ניסוי היא p וההסתברות לקבל בדיוק k הצלחות היא:

Pilu4.JPG







התפלגות בינומית שלילית:

X משתנה מקרי בינומי שלילי אם עורכים ניסויים בלתי תלויים, ההסתברות להצלחה בכל ניסוי היא p וההסתברות לקבל את m הצלחות בk ניסויים:

Pilu5.JPG








התפלגות היפרגיאומטרית:

בוחרים באקראי (ובלי החזרה) מדגם בגודל n, מתוך כד המכיל N כדורים מתוכם m לבנים והשאר שחורים. X מ"מ היפרגיאומטרי מתאר את מספר הכדורים הלבנים שנבחו.

Pilu6.JPG







התפלגות מולטינומית

מבצעים N ניסויים בלתי תלויים . לכל ניסוי קיימות k תוצאות אפשריות כך שההסתברות לתוצאה i היא Pilu7.JPG ומתקייםPilu8.JPG Pilu9.JPGהוא מספר התוצאות מסוג i שהתקבלו ב-N הניסויים